
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

© 1998 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. CWA 13449-6:1998 E

CEN

WORKSHOP

AGREEMENT

CWA 13449-6

December 1998

ICS 35.200;35.240.15;35.240.40

English version

Extensions for Financial Services (XFS) interface specification -
Part 6: PIN Keypad Device Class Interface - Programmer’s

Interface

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Central Secretariat can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN Members are the National Standards Bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

Page 2
CWA 13449-6:1998

Contents

Foreword 3

0. Introduction 4

1. XFS Service-Specific Programming 5

2. Personal Identification Number (PIN) Keypads ... 6

3. Info Commands.. 7

3.1 WFS_INF_PIN_STATUS... 7

3.2 WFS_INF_PIN_CAPABILITIES .. 8

3.3 WFS_INF_PIN_KEY_DETAIL... 1 0

3.4 WFS_INF_PIN_FUNCKEY_DETAIL... 11

4. Execute Commands... 13

4.1 WFS_CMD_PIN_CRYPT .. 13

4.2 WFS_CMD_PIN_IMPORT_KEY ... 14

4.3 WFS_CMD_PIN_DERIVE_KEY.. 15

4.4 WFS_CMD_PIN_GET_PIN ... 16

4.5 WFS_CMD_PIN_LOCAL_DES... 18

4.6 WFS_CMD_PIN_CREATE_OFFSET.. 19

4.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE... 20

4.8 WFS_CMD_PIN_LOCAL_VISA .. 21

4.9 WFS_CMD_PIN_PRESENT_IDC ... 22

4.10 WFS_CMD_PIN_GET_PINBLOCK .. 23

4.11 WFS_CMD_PIN_GET_DATA ... 24

4.12 WFS_CMD_PIN_INITIALIZATION.. 26

5. Events 27

5.1 WFS_EXEE_PIN_KEY .. 27

5.2 WFS_SRVE_PIN_INITIALIZED .. 27

5.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS.. 27

6. C - Header File 28

Page 3
CWA 13449-6:1998

Foreword

This CWA is revision 2.0 of the XFS interface specification. Release 2.0 extends the scope of the XFS interface
specification to include both the self service/ATM environment as well as the branch environment. The new
specification now fully supports cameras, deposit units, identification cards, PIN pads, sensors and indicator units,
text terminals, cash dispenser modules and a wide variety of printing mechanisms.

This specification was originally developed by the Banking Solutions Vendor Council (BSVC), and is endorsed by
the CEN/ISSS Workshop on XFS. This Workshop gathers both suppliers (among others the BSVC members) as
well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN/ISSS Secretariat.

The specification is continuously reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore
expected that an update of the specification will be published in due time as a CWA, superseding this revision 2.00.

This CWA is supplemented by a set of release notes, which are available from the CEN/ISSS Secretariat (an on-line
version of these release notes is available from http://www.cenorm.be/isss/Workshop/XFS/release-notes.htm).

Page 4
CWA 13449-6:1998

0. Introduction

This is part 6 of the multi-part CWA 13449, describing Release 2.0 of the XFS interface specification.

The full CWA 13449 "Extensions for Financial Services (XFS) interface specification"consists of the
following parts:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's
Reference
Part 2: Service Classes Definition; Programmer's Reference
Part 3: Printer Device Class Interface - Programmer's Reference
Part 4: Identification Card Device Class Interface - Programmer's Reference
Part 5: Cash Dispenser Device Class Interface - Programmer's Reference
Part 6: PIN Keypad Device Class Interface - Programmer's Reference
Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference
Part 8: Depository Device Class Interface - Programmer's Reference
Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference
Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and
explanations on the CWA specifications, which are not requiring functional changes. The current version
of the Release Notes is available from the CEN/ISSS Secretariat (contact isss@cenorm.be or download
from http://www.cenorm.be/isss/ Workshop/XFS/release-notes.htm).

The information in this document originally contributed by members of the Banking Solutions Vendor
Council and endorsed by the CEN/ISSS Workshop on XFS, represents the Workshop's current views on
the issues discussed as of the date of publication. It is furnished for informational purposes only and is
subject to change without notice. CEN/ISSS makes no warranty, express or implied, with respect to this
document.

The XFS specifications are now further developed in the CEN/ISSS Workshop on XFS. CEN/ISSS
Workshops are open to all interested parties offering to contribute. Parties interested in participating
should contact the CEN/ISSS Secretariat (isss@cenorm.be).

A Software Development Kit (SDK) which supplies the components and tools to allow the
implementation of compliant applications and services is available from Microsoft1.

To the extent that date processing occurs, all XFS Workshop participants agree that the XFS
specifications are Year 2000 compliant.

Revision History:
1.0 May 24, 1993 Initial release of API and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for API/SPI and

service class definitions, with updates
2.00 November 11, 1996 Updated release encompassing self-service environment.

October 6, 1998 WOSA/XFS Release 2.00 as originally developed by the BSVC, has been
formally accepted as a CEN Workshop Agreement by the
CEN/ISSS XFS Workshop and the name WOSA/XFS has been changed
into XFS. In spite of the name change, certain occurrencies of
WOSA/XFS however still appear in the documentation, for compatibility
reasons

1 Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation

Page 5
CWA 13449-6:1998

1. XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of service
providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of service providers, the syntax of the
command is as similar as possible across all services, since a major objective of the Extensions for Financial
Services specification is to standardize command codes and structures for the broadest variety of services. For
example, using the WFSExecute function, the commands to read data from various services are as similar as
possible to each other in their syntax and data structures.

In general, the specific command set for a service class is defined as the union of the specific capabilities likely to be
provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a service provider may receive a service-specific command that it does not support:

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is not considered to
be fundamental to the service. In this case, the service provider returns a successful completion, but does no
operation. An example would be a request from an application to turn on a control indicator on a passbook
printer; the service provider recognizes the command, but since the passbook printer it is managing does not
include that indicator, the service provider does no operation and returns a successful completion to the
application.

� The requested capability is defined for the class of service providers by the XFS specification, the particular
vendor implementation of that service does not support it, and the unsupported capability is considered to be
fundamental to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling
application. An example would be a request from an application to a cash dispenser to dispense coins; the
service provider recognizes the command but, since the cash dispenser it is managing dispenses only notes,
returns this error.

� The requested capability is not defined for the class of service providers by the XFS specification. In this case,
a WFS_ERR_INVALID_COMMAND error is returned to the calling application .

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

Page 6
CWA 13449-6:1998

2. Personal Identification Number (PIN) Keypads

This section describes the application program interface for personal identification number keypads (PIN pads) and
other encryption/decryption devices. This description includes definitions of the service-specific commands that can
be issued, using the WFSAsyncExecute, WFSExecute, WFSGetInfo and WFSAsyncGetInfo functions.

This section describes the general interface for the following functions:
� Administration of encryption devices
� Loading of encryption keys
� Encryption / decryption
� Entering Personal Identification Numbers (PINs)
� PIN verification
� PIN block generation (encrypted PIN)
� Clear text data handling
� Function key handling
� PIN presentation to chip card

 If the PIN Pad device has local display capability, display handling should be handled using the Text Terminal Unit
(TTU) interface.

 This specification does not claim to adhere to any security standards, any security standards supported will be
vendor dependent.

 Important Notes:
� This revision of this specification does not define key management procedures; key management is

vendor-specific.
� Key space management is customer-specific, and is therefore handled by vendor-specific

mechanisms.
� Only numeric PIN pads are handled in this specification.

Page 7
CWA 13449-6:1998

3. Info Commands

3.1 WFS_INF_PIN_STATUS

Description The WFS_INF_PIN_STATUS command returns several kinds of status information.

Input Param None.

Output Param LPWFSPINSTATUS lpStatus;

typedef struct _wfs_pin_status
{
WORD fwDevice;
WORD fwEncStat;
LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

fwDevice
Specifies the state of the PIN pad device as one of the following flags:
Value Meaning
WFS_PIN_DEVONLINE The device is on-line.
WFS_PIN_DEVOFFLINE The device is off-line.
WFS_PIN_DEVPOWEROFF The device is powered off.
WFS_PIN_DEVBUSY The device is busy processing a request.
WFS_PIN_DEVNODEVICE There is no device connected.
WFS_PIN_DEVHWERROR The device is inoperable due to a hardware error.
WFS_PIN_DEVUSERERROR The device is inoperable due to interference by a user.

fwEncStat
Specifies the state of the Encryption Module as one of the following flags:
Value Meaning
WFS_PIN_ENCNOTREADY The encryption module is not ready.
WFS_PIN_ENCNOTINITIALIZED The encryption module is not initialized (no master key

loaded).
WFS_PIN_ENCINITIALIZED The encryption module is initialized and master key

(where required) and any other initial keys are loaded;
ready to import other keys.

WFS_PIN_ENCREADY The encryption module is initialized and ready (at least
one key is imported into the encryption module).

WFS_PIN_ENCBUSY The encryption module is busy (implies that the device is
busy).

WFS_PIN_ENCUNDEFINED The encryption module state is undefined.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.
Each string will be null-terminated, with the final string terminating with two null characters.

Error Codes There are no additional error codes generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

Page 8
CWA 13449-6:1998

3.2 WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.

Input Param None.

Output Param LPWFSPINCAPS lpCaps;

typedef struct _wfs_pin_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
USHORT usKeyNum;
WORD fwAlgorithms;
WORD fwPinFormats;
WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;
BOOL bIDConnect;
WORD fwIDKey;
WORD fwValidationAlgorithms;
LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS_PIN

fwType
Specifies the type of the PIN pad security module as a combination of the following flags:

Value Meaning
WFS_PIN_TYPEEPP electronic PIN pad
WFS_PIN_TYPEEDM encryption/decryption module

bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

usKeyNum
Number of the keys which can be stored in the encryption/decryption module.

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value Meaning
WFS_PIN_CRYPTDESECB Electronic Code Book
WFS_PIN_CRYPTDESCBC Cipher Block Chaining
WFS_PIN_CRYPTDESMAC MAC calculation using CBC
WFS_PIN_CRYPTDESCFB Cipher Feed Back
WFS_PIN_CRYPTRSA RSA Encryption
WFS_PIN_CRYPTECMA ECMA Encryption
WFS_PIN_CRYPTTRIDESECB Triple DES with Electronic Code Book
WFS_PIN_CRYPTTRIDESCBC Triple DES with Cipher Block Chaning
WFS_PIN_CRYPTTRIDESCFB Triple DES with Cipher Feed Back
WFS_PIN_CRYPTTRIDESMAC Triple DES MAC calculation using CBC

fwPinFormats
Supported PIN formats; a combination of the following flags:

Value Meaning
WFS_PIN_FORM3624 PIN left justified, filled with padding characters, PIN

length 4-16 digits
WFS_PIN_FORMANSI PIN is preceded by 0x00 and the length of the PIN (0x04

to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, minimum 12 digits without check

Page 9
CWA 13449-6:1998

number)
WFS_PIN_FORMISO0 PIN is preceded by 0x00 and the length of the PIN (0x04

to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, no minimum length specified, missing
digits are filled with 0x00)

WFS_PIN_FORMISO1 PIN is preceded by 0x01 and the length of the PIN (0x04
to 0x0C), padding characters are taken from a transaction
field (10 digits)

WFS_PIN_FORMECI2 (similar to WFS_PIN_FORM3624), PIN only 4 digits
WFS_PIN_FORMECI3 PIN is preceded by the length (digit), PIN length 4-6

digits, padded with 0x00
WFS_PIN_FORMVISA same as WFS_PIN_FORMECI3
WFS_PIN_FORMDIEBOLD PIN is padded with the padding character and may be not

encrypted, single encrypted or double encrypted.
WFS_PIN_FORMDIEBOLDCO PIN is preceeded by the two-digit coordination number,

padded with the padding character and may be not
encrypted, single encrypted or double encrypted.

fwDerivationAlgorithms
Supported derivation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_CHIP_ZKA Algorithm for the derivation of a chip card individual key

as described by the German ZKA.

fwPresentationAlgorithms
 Supported presentation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_PRESENT_CLEAR Algorithm for the presentation of a clear text PIN to a

chip card.

fwDisplay
Specifies the type of the display used in the PIN pad module as one of the following flags:

Value Meaning
WFS_PIN_DISPNONE no display unit
WFS_PIN_DISPLEDTHROUGH lights next to text guide user
WFS_PIN_DISPDISPLAY a real display is available (this doesn’t apply for self-

service)

bIDConnect
Specifies whether the PIN pad is directly physically connected to the ID card unit. The value of
this parameter is either TRUE or FALSE.

fwIDKey
Specifies whether an ID key is supported as a combination of the following flags:

Value Meaning
WFS_PIN_IDKEYINITIALIZATION ID key supported in the

WFS_CMD_PIN_INITIALIZATION command.
WFS_PIN_IDKEYIMPORT ID key supported in the

WFS_CMD_PIN_IMPORT_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the
following flags:

Value Meaning
WFS_PIN_DES DES algorithm
WFS_PIN_EUROCHEQUE EUROCHEQUE algorithm
WFS_PIN_VISA VISA algorithm
WFS_PIN_DES_OFFSET DES offset generation algorithm

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.

Page 10
CWA 13449-6:1998

Each string is null-terminated, with the final string terminating with two null characters.
Error Codes There are no additional error codes generated by this command.

Comments Applications which require or expect specific information to be present in the lpsExtra parameter
may not be device or vendor-independent.

3.3 WFS_INF_PIN_KEY_DETAIL

Description This command returns detailed information about the keys in the encryption module.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAIL * lppKeyDetail;

Pointer to a null-terminated array of pointers to key detail structures.

typedef struct _wfs_pin_key_detail
{
LPSTR lpsKeyName;
WORD fwUse;
BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

lpsKeyName
Specifies the name of the key.

fwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USENODUPLICATE key can be imported only once

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

Page 11
CWA 13449-6:1998

3.4 WFS_INF_PIN_FUNCKEY_DETAIL

Description This command returns information about the names of the Function Keys supported by the device.
Location information is also returned for the supported FDKs (Function Descriptor Keys) or
Touch Screen Pads if this XFS interface is used for Touch Screen input.

Input Param LPULONG lpulFDKMask ;

lpulFDKMask
Mask for the FDKs for which additional information is requested.
If 0x00000000, only information about function keys is returned.
If 0xFFFFFFFF, information about all the supported FDKs is returned.

Output Param LPWFSPINFUNCKEYDETAIL lpFuncKeyDetail;

typedef struct _wfs_pin_func_key_detail
{

 ULONG ulFuncMask;
USHORT usNumberFDKs;
LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

ulFuncMask
Specifies the function keys available for this physical device as a combination of the following
flags:

WFS_PIN_FK_0
WFS_PIN_FK_1
WFS_PIN_FK_2
WFS_PIN_FK_3
WFS_PIN_FK_4
WFS_PIN_FK_5
WFS_PIN_FK_6
WFS_PIN_FK_7
WFS_PIN_FK_8
WFS_PIN_FK_9
WFS_PIN_FK_ENTER
WFS_PIN_FK_CANCEL
WFS_PIN_FK_CLEAR
WFS_PIN_FK_BACKSPACE
WFS_PIN_FK_HELP
WFS_PIN_FK_DECPOINT
WFS_PIN_FK_00
WFS_PIN_FK_000
WFS_PIN_FK_RES1 (reserved for future use)
WFS_PIN_FK_RES2 (reserved for future use)
WFS_PIN_FK_RES3 (reserved for future use)
WFS_PIN_FK_RES4 (reserved for future use)
WFS_PIN_FK_RES5 (reserved for future use)
WFS_PIN_FK_RES6 (reserved for future use)
WFS_PIN_FK_RES7 (reserved for future use)
WFS_PIN_FK_RES8 (reserved for future use)

The remaining 6 bit masks may be used as vendor dependent keys.
WFS_PIN_FK_OEM1
WFS_PIN_FK_OEM2
WFS_PIN_FK_OEM3
WFS_PIN_FK_OEM4
WFS_PIN_FK_OEM5
WFS_PIN_FK_OEM6

usNumberFDKs
This value indicates the number of FDK structures returned. This number can be less than the
number of keys requested, if any keys are not supported.

Page 12
CWA 13449-6:1998

lppFDKs
Pointer to an array of pointers to FDK structures.

typedef struct _wfs_pin_fdk
{
ULONG ulFDK;
USHORT usXPosition;
USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

ulFDK
Specifies the code returned by this FDK, defined as one of the following values:

WFS_PIN_FK_FDK01
WFS_PIN_FK_FDK02
WFS_PIN_FK_FDK03
WFS_PIN_FK_FDK04
WFS_PIN_FK_FDK05
WFS_PIN_FK_FDK06
WFS_PIN_FK_FDK07
WFS_PIN_FK_FDK08
WFS_PIN_FK_FDK09
WFS_PIN_FK_FDK10
WFS_PIN_FK_FDK11
WFS_PIN_FK_FDK12
WFS_PIN_FK_FDK13
WFS_PIN_FK_FDK14
WFS_PIN_FK_FDK15
WFS_PIN_FK_FDK16
WFS_PIN_FK_FDK17
WFS_PIN_FK_FDK18
WFS_PIN_FK_FDK19
WFS_PIN_FK_FDK20
WFS_PIN_FK_FDK21
WFS_PIN_FK_FDK22
WFS_PIN_FK_FDK23
WFS_PIN_FK_FDK24
WFS_PIN_FK_FDK25
WFS_PIN_FK_FDK26
WFS_PIN_FK_FDK27
WFS_PIN_FK_FDK28
WFS_PIN_FK_FDK29
WFS_PIN_FK_FDK30
WFS_PIN_FK_FDK31
WFS_PIN_FK_FDK32

usXPosition
For FDKs, specifies the FDK position relative to the Left Hand side of the screen expressed as a
percentage of the width of the screen.

usYPosition
For FDKs, specifies the FDK position relative to the top of the screen expressed as a
percentage of the height of the screen.

Error Codes There are no additonal error codes generated by this command.

Comments None.

Page 13
CWA 13449-6:1998

4. Execute Commands

4.1 WFS_CMD_PIN_CRYPT

Description The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS_INF_PIN_CAPABILITIES command.

This command can also be used for Message Authentication Code generation (i.e. MACing). For
this purpose, it is possible to specify how the data is formatted before the encryption.

The input data can be expanded with a fill-character to the necessary length (mandated by the
encryption algorithm being used).

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

Input Param LPWFSPINCRYPT lpCrypt;

typedef struct _wfs_pin_crypt
{
WORD wMode;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
WORD wAlgorithm;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
BYTE bCompression;
LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

wMode
Specifies whether to encrypt or decrypt, values are one of the following:

Value Meaning
WFS_PIN_MODEENCRYPT encrypt with key
WFS_PIN_MODEDECRYPT decrypt with key

This parameter does not apply to MACing.

lpsKey
Specifies the name of the stored key.

lpxKeyEncKey
If NULL, lpsKey is used directly for encryption/decryption. Otherwise, lpsKey is used to
decrypt the encrypted key passed in lpxKeyEncKey and the result is used for
encryption/decryption. Key is a double length key when used for Triple DES
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES.

wAlgorithm
Specifies the encryption algorithm. Possible values are those described in
WFS_INF_PIN_CAPABILITIES.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the
Initialization Vector. If this parameter is NULL, lpxStartValue is used as the Initialization
Vector.

lpxStartValue
DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL lpsStartValueKey is used as the Start Value. If lpsStartValueKey is also
NULL, the default value for CBC / CFB / MAC is 16 hex digits 0x0.

bPadding
Specifies the padding character for encryption.

Page 14
CWA 13449-6:1998

bCompression
Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character in the actual code table.

lpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed.

Output Param LPWFSXDATA lpxCryptData;

lpxCryptData
Pointer to the encrypted or decrypted data, or MAC value.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey or lpxStartValue is

not supported.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments The datatype LPWFSXDATA is used to pass hexadecimal data and is defined as follows :

typedef struct _wfs_hex_data
{
USHORT usLength;
LPBYTE lpbData;
} WFSXDATA, *LPWFSXDATA;

usLength
Length of the byte stream pointed to by lpbData.

lpbData
Pointer to the binary data stream.

4.2 WFS_CMD_PIN_IMPORT_KEY

Description The key passed by the application is loaded in the encryption module. The key can be passed in
clear text mode or encrypted with an accompanying “key encryption key”.

Input Param LPWFSPINIMPORT lpImport;

typedef struct _wfs_pin_import
{
LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxValue;
WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
If lpsEncKey is NULL the key is loaded directly into the encryption module. Otherwise,
lpsEncKey specifies a key name or a format name which were used to encrypt the key string
passed in lpxValue.

Page 15
CWA 13449-6:1998

lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

lpxValue
Specifies the value of key to be loaded.

fwUse
Specifies the type of access for which the key can be used as a combination of the following
flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USENODUPLICATE key can be imported only once

Output Param LPWFSXDATA lpxKVC;

lpxKVC
pointer to the key verification code data that can be used for verification of the loaded key,
NULL if device does not have that capability.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.3 WFS_CMD_PIN_DERIVE_KEY

Description A key is derived from input data using a key generating key and an initialization vector. The input
data can be expanded with a fill-character to the necessary length (mandated by the encryption
algorithm being used). The derived key is imported into the encryption module and is used for
encryption or decryption operations.

Input Param LPWFSPINDERIVE lpDerive;

typedef struct _wfs_pin_derive
{
WORD wDerivationAlgorithm;
LPSTR lpsKey;
LPSTR lpsKeyGenKey;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
LPWFSXDATA lpxInputData;
LPWFSXDATA lpxIdent;
} WFSPINDERIVE, * LPWFSPINDERIVE;

Page 16
CWA 13449-6:1998

wDerivationAlgorithm
Specifies the algorithm that is used for derivation. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the name where the derived key will be stored.

lpsKeyGenKey
Specifies the name of the key generating key that is used for the derivation.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the
Initialization Vector. If this parameter is NULL, lpxStartValue is used as the Initialization
Vector.

lpxStartValue
DES initialization vector for the encryption step within the derivation.

bPadding
Specifies the padding character for the encryption step within the derivation.

lpxInputData
Pointer to the data to be used for key derivation.

lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

Output Param None.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED The specified algorithm is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxStartValue is not supported.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.4 WFS_CMD_PIN_GET_PIN

Description This function stores the PIN entry via the PIN pad. From the point this function is invoked, PIN
digit entries are not passed to the application. For each PIN digit, or any other active key entered,
an execute notification event is sent in order to allow an application to perform the appropriate
display action (i.e. when the PIN pad has no integrated display). The application is not informed
of the value entered, the execute notification only informs that a key has been depressed.

Some PIN pad devices do not inform the application as each PIN digit is entered, but locally
process the PIN entry based upon minimum PIN length and maximum PIN length input
parameters. These PIN pad devices which provide local PIN entry management and optional
display tracking may or may not notify the application of a minimum PIN length violation.

When the maximum number of PIN digits is entered, or a completion key is pressed after the
minimum number of PIN digits is entered, a WFS_EXEC_COMPLETE event message is sent to

Page 17
CWA 13449-6:1998

the application. Once this notification is received, the output parameters are then returned to the
application from this function call. The depression of the <Cancel> key is also passed to the
application via the WFS_EXEC_COMPLETE event message.

If usMaxLen is zero, the service provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

Input Param LPWFSPINGETPIN lpGetPin;

typedef struct _wfs_pin_getpin
{
USHORT usMinLen;
USHORT usMaxLen;
BOOL bAutoEnd;
CHAR cEcho;
ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

usMinLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero
indicates no minimum PIN length verification.

usMaxLen
Specifies the maximum number of digits which can be entered for the PIN.

bAutoEnd
If bAutoEnd is set to true, the service provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. When usMaxLen is reached, the service provider will disable all numeric
keys. bAutoEnd is ignored when usMaxLen is set to 0.

cEcho
Specifies the replace character to be echoed on a local display for the PIN digit.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command.

ulActiveKeys
Specifies those (other) Function Keys which are active during the execution of the command.

ulTerminateFDKs
Specifies those FDKs which must terminate the execution of the command.

ulTerminateKeys
Specifies those (other) Function Keys which must terminate the execution of the command.

Output Param LPWFSPINENTRY lpEntry;

typedef struct _wfs_pin_entry
{
USHORT usDigits;
WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

usDigits
Specifies the number of PIN digits entered.

wCompletion
Specifies the reason for completion of the entry. Possible values are:
Value Meaning

WFS_PIN_COMPAUTO The command terminated automatically, because
maximum PIN length was reached.

WFS_PIN_COMPENTER The ENTER Function Key was pressed.

Page 18
CWA 13449-6:1998

WFS_PIN_COMPCANCEL The CANCEL Function Key was pressed.
WFS_PIN_COMPCONTINUE Input continues (this value is only used in the execute

event WFS_EXEE_PIN_KEY).
WFS_PIN_COMPCLEAR The CLEAR Function Key was pressed and the previous

input is cleared (this value is only used in the execute
event WFS_EXEE_PIN_KEY).

WFS_PIN_COMPBACKSPACE The last input digit was cleared (this value is only used in
the execute event WFS_EXEE_PIN_KEY).

WFS_PIN_COMPFDK An FDK was pressed.
WFS_PIN_COMPHELP The HELP Function Key was pressed..
WFS_PIN_COMPFK A Function Key (FK) other than ENTER, CLEAR,

CANCEL, BACKSPACE, HELP was pressed.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the service provider.
WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified.
WFS_ERR_PIN_NOTERMINATEKEYS There are no terminate keys specified and

usMaxLen is set to 0.
WFS_ERR_PIN_MINIMUMLENGTH The minimum PIN length field is invalid or

greater than the maximum PIN length field.

Events The following additional events can be generated by this command:
Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.

Comments None.

4.5 WFS_CMD_PIN_LOCAL_DES

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the DES validation algorithm and locally verified for correctness. The
local DES verification is based on the IBM 3624 standard. The result of the verification is
returned to the application. This command will clear the PIN.

Input Param LPWFSPINLOCALDES lpLocalDES;

typedef struct _wfs_pin_local_des
{
LPSTR lpsValidationData;
LPSTR lpsOffset;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
BOOL bNoLeadingZero;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

lpsValidationData
Validation data

lpsOffset
Offset for the PIN block; if NULL then no offset is used.

bPadding
Specifies the padding character for validation data.

usMaxPIN
Maximum number of PIN digits to be used for validation.

Page 19
CWA 13449-6:1998

usValDigits
Number of Validation digits to be used for validation.

bNoLeadingZero
If set to TRUE and the first digit of result of the modulo 10 addition is a X’0’, it is replaced
with X’1’ before performing the verification against the entered PIN. If set to FALSE, a leading
zero is allowed in entered PINs.

lpsKey
Name of the validation key

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to
convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL pbResult ;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.6 WFS_CMD_PIN_CREATE_OFFSET

Description This function is used to generate a PIN Offset that is used to verify PINs using the
WFS_CMD_PIN_LOCAL_DES execute command. The PIN offset is computed by combining
validation data with the keypad entered PIN. This command will clear the PIN

Input Param LPWFSPINCREATEOFFSET lpPINOffset;

typedef struct _wfs_pin_create_offset
{
LPSTR lpsValidationData;
BYTE bPadding;
USHORT usMaxPIN;
USHORT usValDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

lpsValidationData
Validation data

bPadding
Specifies the padding character for validation data.

Page 20
CWA 13449-6:1998

usMaxPIN
Maximum number of PIN digits to be used for PIN Offset creation.

usValDigits
Number of Validation Data digits to be used for PIN Offset creation.

lpsKey
Name of the validation key

lpxKeyEncKey
If NULL, lpsKey is used directly in PIN Offset creation. Otherwise, lpsKey is used to decrypt
the encrypted key passed in lpxKeyEncKey and the result is used in PIN Offset creation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to
convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPSTR lpsOffset;

lpsOffset
Computed PIN Offset.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_NOTALLOWED PIN entered by the user is not allowed.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments The list of ‘forbidden’ PINs (values that cannot be chosen as a PIN, e.g. 1111) is configured in the
device in a vendor dependent way during the configuration of the system.

4.7 WFS_CMD_PIN_LOCAL_EUROCHEQUE

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the Eurocheque validation algorithm and locally verified for
correctness. The result of the verification is returned to the application. This command will clear
the PIN.

Input Param LPWFSPINLOCALEUROCHEQUE lpLocalEurocheque;

typedef struct _wfs_pin_local_eurocheque
{
LPSTR lpsEurochequeData;
LPSTR lpsPVV;
WORD wFirstEncDigits;
WORD wFirstEncOffset;
WORD wPVVDigits;
WORD wPVVOffset;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

lpsEurochequeData
Track-3 Eurocheque data

Page 21
CWA 13449-6:1998

lpsPVV
PIN Validation Value from track data.

wFirstEncDigits
Number of digits to extract after first encryption.

wFirstEncOffset
Offset of digits to extract after first encryption.

wPVVDigits
Number of digits to extract for PVV.

wPVVOffset
Offset of digits to extract for PVV.

lpsKey
Name of the validation key.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

lpsDecTable
ASCII decimalization table (16 character string containing characters ‘0’ to ‘9’). Used to
convert the hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits
(0x0 to 0x9).

Output Param LPBOOL lpbResult ;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.8 WFS_CMD_PIN_LOCAL_VISA

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the VISA validation algorithm and locally verified for correctness. The
result of the verification is returned to the application. This command will clear the PIN.

Input Param LPWFSPINLOCALVISA lpLocalVISA;

typedef struct _wfs_pin_local_visa
{
LPSTR lpsPAN;
LPSTR lpsPVV;
WORD wPVVDigits;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

Page 22
CWA 13449-6:1998

lpsPAN
Primary Account Number from track data.

lpsPVV
PIN Validation Value from track data.

wPVVDigits
Number of digits of PVV.

lpsKey
Name of the validation key.

lpxKeyEncKey
If NULL, lpsKey is used directly for PIN validation. Otherwise, lpsKey is used to decrypt the
encrypted key passed in lpxKeyEncKey and the result is used for PIN validation.

Output Param LPBOOL lpbResult ;

lpbResult
Pointer to a boolean value which specifies whether the PIN is correct or not.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.

Events The following additional events can be generated by this command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.9 WFS_CMD_PIN_PRESENT_IDC

Description The PIN, which was entered with the WFS_PIN_GET_PIN command, is combined with the
requisite data specified by the IDC presentation algorithm and presented to the smartcard
contained in the ID Card unit. The result of the presentation is returned to the application. This
command will clear the PIN.

Input Param LPWFSPINPRESENTIDC lpPresentIDC;

typedef struct _wfs_pin_presentidc
{
WORD wPresentAlgorithm;
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

wPresentAlgorithm
Specifies the algorithm that is used for presentation. Possible values are: (see command
WFS_INF_PIN_CAPABILITIES).

wChipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are: (see
command WFS_INF_IDC_CAPABILITIES in the Identification Card Device Class Interface).

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

Page 23
CWA 13449-6:1998

lpbChipData
Points to the data to be sent to the chip.

lpAlgorithmData
Pointer to a structure that contains the data required for the specified presentation algorithm.
For the WFS_PIN_PRESENT_CLEAR algorithm, this structure is defined as:

typedef struct _wfs_pin_presentclear
{
ULONG ulPINPointer;
USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

ulPINPointer
Describes the byte position where to insert the PIN in the lpbChipData buffer. The first byte of
the lpbChipData buffer is numbered 0.

usPINOffset
Describes the bit position where to insert the PIN in the lpbChipData buffer. In each byte, the
most-significant bit is numbered 0, the less significant bit is numbered 7.

Output Param LPWFSPINPRESENTRESULT lpPresentResult;

typedef struct _wfs_pin_present_result
{
WORD wChipProtocol;
ULONG ulChipDataLength;
LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

wChipProtocol
Identifies the protocol that was used to communicate with the chip. This field contains the same
value as the corresponding field in the input structure.

ulChipDataLength
Specifies the length of the byte stream pointed to by lpbChipData.

lpbChipData
Points to the data responded from the chip.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_INVALIDDATA An error occurred while communicating with the

chip.
WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by the

service provider.
WFS_ERR_PIN_NOPIN PIN has not been entered or has been cleared.
WFS_ERR_PIN_ACCESSDENIED The ID card unit is not ready for PIN presentation

or for any vendor specific reason. The ID card
service provider, if any, may have generated a
service event that further describes the reason for
that error code.

Events There are no additional events generated by this command.

Comments None.

4.10 WFS_CMD_PIN_GET_PINBLOCK

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF_PIN_CAPABILITIES command. This command clears the PIN.

Input Param LPWFSPINBLOCK lpPinBlock;

Page 24
CWA 13449-6:1998

typedef struct _wfs_pin_block
{
LPSTR lpsCustomerData;
LPSTR lpsXORData;
BYTE bPadding;
WORD wFormat;
LPSTR lpsKey;
LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

lpsCustomerData
Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN. For ANSI and ISO-0
the PAN (Primary Account Number) is used, for ISO-1 a ten digit transaction field is required.
If not used a NULL is required.
Used for DIEBOLD with coordination number, as a two digit coordination number.

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation.

bPadding
Specifies the padding character.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is
required.

lpsEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required.

Output Param LPWFSXDATA lpxPinBlock ;

lpxPinBlock
Pointer to the encrypted/decrypted data.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_MODENOTSUPPORTED The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_NOPIN PIN has been cleared.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.

Comments None.

4.11 WFS_CMD_PIN_GET_DATA

Description This function is used to return keystrokes entered by the user. It will automatically set the PIN pad
to echo characters on the display if there is a display. For each keystroke an execute notification
event is sent in order to allow an application to perform the appropriate display action (i.e. when
the PIN pad has no integrated display).

Page 25
CWA 13449-6:1998

If usMaxLen is zero, the service provider does not terminate the command unless the application
sets ulTerminateKeys or ulTerminateFDKs. In the event that ulTerminateKeys or
ulTerminateFDKs are not set and usMaxLen is zero, the command will not terminate and the
application must issue a WFSCancel command.

Input Param LPWFSPINGETDATA lpPinGetData;

typedef struct _wfs_pin_getdata
{
USHORT usMaxLen;
BOOL bAutoEnd;
ULONG ulActiveFDKs;
ULONG ulActiveKeys;
ULONG ulTerminateFDKs;
ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

usMaxLen
Specifies the maximum number of digits which can be returned to the application in the data
buffer.

bAutoEnd
If bAutoEnd is set to true, the service provider terminates the command when the maximum
number of digits are entered. Otherwise, the input is terminated by the user using one of the
termination keys. When usMaxLen is reached, the service provider will disable all numeric
keys. bAutoEnd is ignored when usMaxLen is set to 0.

ulActiveFDKs
Specifies those FDKs which are active during the execution of the command.

ulActiveKeys
Specifies those (other) Function Keys which are active during the execution of the command.

ulTerminateFDKs
Specifies those FDKs which must terminate the execution of the command.

ulTerminateKeys
Specifies those (other) Function Keys which must terminate the execution of the command.

Output Param LPWFSPINDATA lpPinData;

typedef struct _wfs_pin_data
{
LPSTR lpsData;
WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA

lpsData
Pointer to the data entered by the user. This pointer is set to NULL if usMaxLen is set to 0.

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_KEYINVALID At least one of the specified function keys or

FDKs is invalid.
WFS_ERR_PIN_KEYNOTSUPPORTED At least one of the specified function keys or

FDKs is not supported by the service provider.
WFS_ERR_PIN_NOACTIVEKEYS There are no active function keys specified.

Events The following additional events can be generated by this command:
Value Meaning
WFS_EXEE_PIN_KEY A key has been pressed at the PIN pad.

Comments None.

Page 26
CWA 13449-6:1998

4.12 WFS_CMD_PIN_INITIALIZATION

Description The encryption module must be initialized before any encryption function can be used. Every
initialization destroys all keys that have been loaded or imported. Usually this command is called
by an operator task and not by the application program.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file
or possibly by means of some secure hardware that can be attached to the device. The application
“initial” keys would normally get updated by the application during a
WFS_EXEC_PIN_IMPORT command as soon as possible. Local vendor dependent static keys
(e.g. storage, firmware and offset keys) would normally be transparent to the application and by
definition can not be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESS_DENIED and
the application must await the WFS_SRVE_PIN_INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF_PIN_CAPABILITIES
command indicates whether or not the device will support this feature.

Input Param LPWFSPININIT lpInit;

typedef struct _wfs_pin_init
{
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

lpxIdent
Pointer to the value of the ID key. Null if not required.

lpxKey
Pointer to the value of the encryption key. Null if not required.

Output Param LPWFSXDATA lpxIdentification;

lpxIdentification
Pointer to the value of the ID key encrypted by the encryption key. Can be used as authorization
for the WFS_CMD_PIN_IMPORT_KEY command, can be NULL if no authorization required.

Error Codes The following additional error codes can be generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).
WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Events The following additional events can be generated by this command:
Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occured accessing an encryption

key.
WFS_SRVE_PIN_INITIALIZED The encryption module is now initialized.

Comments None.

Page 27
CWA 13449-6:1998

5. Events

5.1 WFS_EXEE_PIN_KEY

Description This event specifies that a key has been pressed at the PIN pad. It is used if the device has no
internal display unit and the application has to manage the display of the entered digits.

Event Param LPWFSPINKEY lpKey;

typedef struct _wfs_pin_key
{
WORD wCompletion;
ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

wCompletion
Specifies the reason for completion of the entry. Possible values are:
(see command WFS_CMD_PIN_GET_PIN)

ulDigit
Specifies the digit entered by the user or the replace character when working in encryption
mode (WFS_CMD_PIN_GET_PIN). If no digit but a function key has been depressed, the key
code is returned in this parameter.

Comments None.

5.2 WFS_SRVE_PIN_INITIALIZED

Description This event specifies that, as a result of a WFS_CMD_PIN_INITIALIZATION, the encryption
module is now initialized and the master key (where required) and any other initial keys are
loaded; ready to import other keys.

Event Param LPWFSPININIT lpInit;

lpInit
For a definition of WFSPININIT see command WFS_CMD_PIN_INITIALIZATION.

Comments None.

5.3 WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS

Description This event specifies that an error occurred accessing an encryption key. Possible situations for
generating this event are the encryption key was not found, had no value, or a use violation.

Event Param LPWFSPINACCESS lpAccess;

typedef struct _wfs_pin_access
{
LPSTR lpsKeyName;
LONG lErrorCode;
} WFSPINACCESS, * LPWFSPINACCESS;

lpsKeyName
Specifies the name of the key that caused the error.

lErrorCode
Specifies the type of illegal key access that occurred. Possible values are:
Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not loaded.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.

Comments None.

Page 28
CWA 13449-6:1998

6. C - Header File

/**
* *
*xfspin.h XFS - Personal Identification Number Keypad (PIN) definitions *
* *
* Version 2.00 (11/11/96) *
* *
**/

#ifndef __INC_XFSPIN__H
#define __INC_XFSPIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSPINCAPS.wClass */

#define WFS_SERVICE_CLASS_PIN (4)
#define WFS_SERVICE_CLASS_VERSION_PIN (0x0002) /* Version 2.00 */
#define WFS_SERVICE_CLASS_NAME_PIN "PIN"

#define PIN_SERVICE_OFFSET (WFS_SERVICE_CLASS_PIN * 100)

/* PIN Info Commands */

#define WFS_INF_PIN_STATUS (PIN_SERVICE_OFFSET + 1)
#define WFS_INF_PIN_CAPABILITIES (PIN_SERVICE_OFFSET + 2)
#define WFS_INF_PIN_KEY_DETAIL (PIN_SERVICE_OFFSET + 4)
#define WFS_INF_PIN_FUNCKEY_DETAIL (PIN_SERVICE_OFFSET + 5)

/* PIN Command Verbs */

#define WFS_CMD_PIN_CRYPT (PIN_SERVICE_OFFSET + 1)
#define WFS_CMD_PIN_IMPORT_KEY (PIN_SERVICE_OFFSET + 3)
#define WFS_CMD_PIN_GET_PIN (PIN_SERVICE_OFFSET + 5)
#define WFS_CMD_PIN_GET_PINBLOCK (PIN_SERVICE_OFFSET + 7)
#define WFS_CMD_PIN_GET_DATA (PIN_SERVICE_OFFSET + 8)
#define WFS_CMD_PIN_INITIALIZATION (PIN_SERVICE_OFFSET + 9)
#define WFS_CMD_PIN_LOCAL_DES (PIN_SERVICE_OFFSET + 10)
#define WFS_CMD_PIN_LOCAL_EUROCHEQUE (PIN_SERVICE_OFFSET + 11)
#define WFS_CMD_PIN_LOCAL_VISA (PIN_SERVICE_OFFSET + 12)
#define WFS_CMD_PIN_CREATE_OFFSET (PIN_SERVICE_OFFSET + 13)
#define WFS_CMD_PIN_DERIVE_KEY (PIN_SERVICE_OFFSET + 14)
#define WFS_CMD_PIN_PRESENT_IDC (PIN_SERVICE_OFFSET + 15)

/* PIN Messages */

#define WFS_EXEE_PIN_KEY (PIN_SERVICE_OFFSET + 1)
#define WFS_SRVE_PIN_INITIALIZED (PIN_SERVICE_OFFSET + 2)
#define WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS (PIN_SERVICE_OFFSET + 3)

/* values of WFSPINSTATUS.fwDevice */

#define WFS_PIN_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_PIN_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_PIN_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_PIN_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_PIN_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_PIN_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_PIN_DEVUSERERROR WFS_STAT_DEVUSERERROR

Page 29
CWA 13449-6:1998

/* values of WFSPINSTATUS.fwEncStat */

#define WFS_PIN_ENCREADY (0)
#define WFS_PIN_ENCNOTREADY (1)
#define WFS_PIN_ENCNOTINITIALIZED (2)
#define WFS_PIN_ENCBUSY (3)
#define WFS_PIN_ENCUNDEFINED (4)
#define WFS_PIN_ENCINITIALIZED (5)

/* values of WFSPINCAPS.wType */

#define WFS_PIN_TYPEEPP (0x0001)
#define WFS_PIN_TYPEEDM (0x0002)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS_PIN_CRYPTDESECB (0x0001)
#define WFS_PIN_CRYPTDESCBC (0x0002)
#define WFS_PIN_CRYPTDESCFB (0x0004)
#define WFS_PIN_CRYPTRSA (0x0008)
#define WFS_PIN_CRYPTECMA (0x0010)
#define WFS_PIN_CRYPTDESMAC (0x0020)
#define WFS_PIN_CRYPTTRIDESECB (0x0040)
#define WFS_PIN_CRYPTTRIDESCBC (0x0080)
#define WFS_PIN_CRYPTTRIDESCFB (0x0100)
#define WFS_PIN_CRYPTTRIDESMAC (0x0200)

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN_FORM3624 (0x0001)
#define WFS_PIN_FORMANSI (0x0002)
#define WFS_PIN_FORMISO0 (0x0004)
#define WFS_PIN_FORMISO1 (0x0008)
#define WFS_PIN_FORMECI2 (0x0010)
#define WFS_PIN_FORMECI3 (0x0020)
#define WFS_PIN_FORMVISA WFS_PIN_FORMECI3
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WFS_PIN_FORMDIEBOLDCO (0x0100)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS_PIN_CHIP_ZKA (0x0001)

/* values of WFSPINCAPS.fwPresentationAlgorithms */

#define WFS_PIN_PRESENT_CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN_DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN_DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS_PIN_IDKEYINITIALIZATION (0x0001)
#define WFS_PIN_IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN_DES (0x0001)
#define WFS_PIN_EUROCHEQUE (0x0002)
#define WFS_PIN_VISA (0x0004)
#define WFS_PIN_DES_OFFSET (0x0008)

/* values of WFSPINKEYDETAIL.fwUse */

#define WFS_PIN_USECRYPT (0x0001)
#define WFS_PIN_USEFUNCTION (0x0002)
#define WFS_PIN_USEMACING (0x0004)
#define WFS_PIN_USEKEYENCKEY (0x0020)
#define WFS_PIN_USENODUPLICATE (0x0040)
#define WFS_PIN_USESVENCKEY (0x0080)

Page 30
CWA 13449-6:1998

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_0 (0x00000001)
#define WFS_PIN_FK_1 (0x00000002)
#define WFS_PIN_FK_2 (0x00000004)
#define WFS_PIN_FK_3 (0x00000008)
#define WFS_PIN_FK_4 (0x00000010)
#define WFS_PIN_FK_5 (0x00000020)
#define WFS_PIN_FK_6 (0x00000040)
#define WFS_PIN_FK_7 (0x00000080)
#define WFS_PIN_FK_8 (0x00000100)
#define WFS_PIN_FK_9 (0x00000200)
#define WFS_PIN_FK_ENTER (0x00000400)
#define WFS_PIN_FK_CANCEL (0x00000800)
#define WFS_PIN_FK_CLEAR (0x00001000)
#define WFS_PIN_FK_BACKSPACE (0x00002000)
#define WFS_PIN_FK_HELP (0x00004000)
#define WFS_PIN_FK_DECPOINT (0x00008000)
#define WFS_PIN_FK_00 (0x00010000)
#define WFS_PIN_FK_000 (0x00020000)
#define WFS_PIN_FK_RES1 (0x00040000)
#define WFS_PIN_FK_RES2 (0x00080000)
#define WFS_PIN_FK_RES3 (0x00100000)
#define WFS_PIN_FK_RES4 (0x00200000)
#define WFS_PIN_FK_RES5 (0x00400000)
#define WFS_PIN_FK_RES6 (0x00800000)
#define WFS_PIN_FK_RES7 (0x01000000)
#define WFS_PIN_FK_RES8 (0x02000000)
#define WFS_PIN_FK_OEM1 (0x04000000)
#define WFS_PIN_FK_OEM2 (0x08000000)
#define WFS_PIN_FK_OEM3 (0x10000000)
#define WFS_PIN_FK_OEM4 (0x20000000)
#define WFS_PIN_FK_OEM5 (0x40000000)
#define WFS_PIN_FK_OEM6 (0x80000000)

/* values of WFSPINFUNCKEY.ulFDK */

#define WFS_PIN_FK_FDK01 (0x00000001)
#define WFS_PIN_FK_FDK02 (0x00000002)
#define WFS_PIN_FK_FDK03 (0x00000004)
#define WFS_PIN_FK_FDK04 (0x00000008)
#define WFS_PIN_FK_FDK05 (0x00000010)
#define WFS_PIN_FK_FDK06 (0x00000020)
#define WFS_PIN_FK_FDK07 (0x00000040)
#define WFS_PIN_FK_FDK08 (0x00000080)
#define WFS_PIN_FK_FDK09 (0x00000100)
#define WFS_PIN_FK_FDK10 (0x00000200)
#define WFS_PIN_FK_FDK11 (0x00000400)
#define WFS_PIN_FK_FDK12 (0x00000800)
#define WFS_PIN_FK_FDK13 (0x00001000)
#define WFS_PIN_FK_FDK14 (0x00002000)
#define WFS_PIN_FK_FDK15 (0x00004000)
#define WFS_PIN_FK_FDK16 (0x00008000)
#define WFS_PIN_FK_FDK17 (0x00010000)
#define WFS_PIN_FK_FDK18 (0x00020000)
#define WFS_PIN_FK_FDK19 (0x00040000)
#define WFS_PIN_FK_FDK20 (0x00080000)
#define WFS_PIN_FK_FDK21 (0x00100000)
#define WFS_PIN_FK_FDK22 (0x00200000)
#define WFS_PIN_FK_FDK23 (0x00400000)
#define WFS_PIN_FK_FDK24 (0x00800000)
#define WFS_PIN_FK_FDK25 (0x01000000)
#define WFS_PIN_FK_FDK26 (0x02000000)
#define WFS_PIN_FK_FDK27 (0x04000000)
#define WFS_PIN_FK_FDK28 (0x08000000)
#define WFS_PIN_FK_FDK29 (0x10000000)
#define WFS_PIN_FK_FDK30 (0x20000000)
#define WFS_PIN_FK_FDK31 (0x40000000)
#define WFS_PIN_FK_FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN_MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)

Page 31
CWA 13449-6:1998

/* values of WFSPINENTRY.wCompletion */

#define WFS_PIN_COMPAUTO (0)
#define WFS_PIN_COMPENTER (1)
#define WFS_PIN_COMPCANCEL (2)
#define WFS_PIN_COMPCONTINUE (6)
#define WFS_PIN_COMPCLEAR (7)
#define WFS_PIN_COMPBACKSPACE (8)
#define WFS_PIN_COMPFDK (9)
#define WFS_PIN_COMPHELP (10)
#define WFS_PIN_COMPFK (11)

/* XFS PIN Errors */

#define WFS_ERR_PIN_KEYNOTFOUND (-(PIN_SERVICE_OFFSET + 0))
#define WFS_ERR_PIN_MODENOTSUPPORTED (-(PIN_SERVICE_OFFSET + 1))
#define WFS_ERR_PIN_ACCESSDENIED (-(PIN_SERVICE_OFFSET + 2))
#define WFS_ERR_PIN_INVALIDID (-(PIN_SERVICE_OFFSET + 3))
#define WFS_ERR_PIN_DUPLICATEKEY (-(PIN_SERVICE_OFFSET + 4))
#define WFS_ERR_PIN_KEYNOVALUE (-(PIN_SERVICE_OFFSET + 6))
#define WFS_ERR_PIN_USEVIOLATION (-(PIN_SERVICE_OFFSET + 7))
#define WFS_ERR_PIN_NOPIN (-(PIN_SERVICE_OFFSET + 8))
#define WFS_ERR_PIN_INVALIDKEYLENGTH (-(PIN_SERVICE_OFFSET + 9))
#define WFS_ERR_PIN_KEYINVALID (-(PIN_SERVICE_OFFSET + 10))
#define WFS_ERR_PIN_KEYNOTSUPPORTED (-(PIN_SERVICE_OFFSET + 11))
#define WFS_ERR_PIN_NOACTIVEKEYS (-(PIN_SERVICE_OFFSET + 12))
#define WFS_ERR_PIN_INVALIDKEY (-(PIN_SERVICE_OFFSET + 13))
#define WFS_ERR_PIN_NOTERMINATEKEYS (-(PIN_SERVICE_OFFSET + 14))
#define WFS_ERR_PIN_MINIMUMLENGTH (-(PIN_SERVICE_OFFSET + 15))
#define WFS_ERR_PIN_PROTOCOLNOTSUPP (-(PIN_SERVICE_OFFSET + 16))
#define WFS_ERR_PIN_INVALIDDATA (-(PIN_SERVICE_OFFSET + 17))
#define WFS_ERR_PIN_NOTALLOWED (-(PIN_SERVICE_OFFSET + 18))

/*===*/
/* PIN Info Command Structures and variables */
/*===*/

typedef struct _wfs_pin_status
{
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

typedef struct _wfs_pin_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;
 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

typedef struct _wfs_pin_key_detail
{
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

typedef struct _wfs_pin_fdk
{
 ULONG ulFDK;

Page 32
CWA 13449-6:1998

 USHORT usXPosition;
 USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

typedef struct _wfs_pin_func_key_detail
{
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

/*===*/
/* PIN Execute Command Structures */
/*===*/

typedef struct _wfs_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSXDATA, * LPWFSXDATA;

typedef struct _wfs_pin_crypt
{
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

typedef struct _wfs_pin_import
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

typedef struct _wfs_pin_derive
{
 WORD wDerivationAlgorithm;
 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
 } WFSPINDERIVE, * LPWFSPINDERIVE;

typedef struct _wfs_pin_getpin
{
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

typedef struct _wfs_pin_entry
{
 USHORT usDigits;
 WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

typedef struct _wfs_pin_local_des

Page 33
CWA 13449-6:1998

{
 LPSTR lpsValidationData;
 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

typedef struct _wfs_pin_create_offset
{
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

typedef struct _wfs_pin_local_eurocheque
{
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

typedef struct _wfs_pin_local_visa
{
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

typedef struct _wfs_pin_presentidc
{
 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

typedef struct _wfs_pin_present_result
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

typedef struct _wfs_pin_presentclear
{
 ULONG ulPINPointer;
 USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

typedef struct _wfs_pin_block
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;

Page 34
CWA 13449-6:1998

 LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

typedef struct _wfs_pin_getdata
{
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

typedef struct _wfs_pin_data
{
 LPSTR lpsData;
 WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA;

typedef struct _wfs_pin_init
{
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

/*===*/
/* PIN Message Structures */
/*===*/

typedef struct _wfs_pin_key
{
 WORD wCompletion;
 ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

typedef struct _wfs_pin_access
 {
 LPSTR lpsKeyName;
 LONG lErrorCode;
 } WFSPINACCESS, * LPWFSPINACCESS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPIN__H */

